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EXECUTIVE SUMMARY

The agriculture industry has broadly deployed gridded data systems to monitor weather 

and climate remotely across a wide variety of field conditions. Data accuracy is vital to 

the intent of these deployments. Satellite-enhanced gridded data systems, such as IBM’s 

The Weather Company (IBM-TWC), generally measure weather conditions at widescale 

resolution, often spanning up to 30km per data point. This methodology can result in 

data gaps which fail to capture variations in microclimates, requiring data averaging and 

extrapolation brought on by a lack of ground-level data granularity. As an enhancement, 

localized ground-truth data, such as Arable’s, provides an accurate snapshot of actual field 

conditions to fill in the gaps, leading to superior decision-making at the field level. 

Using contextual discussions and charts, this paper examines the differences between 

IBM-TWC’s weather data and measured ground-truth data from the Arable Mark 2—a 

portable, highly accurate in-situ weather and climate sensing system. The studies encompass 

a range of common weather measurements and important crop health indicators to provide a 

comprehensive argument in favor of using groud-truth data for agricultural desicion-making. 

KEY FINDINGS

In individual comparison studies performed at locations around the world, the gridded 

data system showed a wide range of deviation from ground-truth, including:

• Rainfall: overestimated by as much as 361%

• Air temperature: average errors were over 3ºC

• Relative humidity: errors as high as 25%

• Evapotranspiration: underestimated by as much as 91%

• Phenology: growth stages as much as 9 days premature

• Ideal spray conditions: missed as much as 54% of the time

• Northern corn leaf blight (NCLB) risk conditions: missed 25% of the time

Localized ground-truth agriculture data, as exemplified by that provided by Arable, provide 

a critical augmentation to widely adopted gridded data systems.
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1. INTRODUCTION

This white paper examines differences 

across a suite of meteorological and 

agronomic observations by comparing 

values between two different types of 

sources: (1) gridded data products and (2) 

localized measurements from in-situ Arable 

Mark 2 devices. We define “gridded data 

products” as services that map a predicted 

set of weather variables to a particular 

grid cell based on latitude and longitude; 

together, these cells cover the entire Earth’s 

surface. The grid cell size or the resolution 

of these products can vary, but all represent 

a modeled average of weather conditions 

across some predefined area. Gridded data 

products are derived from a fusion of many 

different data sources, including ground 

observations from multiple point locations, 

satellite and radar observations, and 

various National Oceanic and Atmospheric 

Administration (NOAA) databases, such as 

Climate Forecast System Reanalysis (CFSR). 

Gridded data are the source for many widely 

used weather products that provide global 

coverage estimates for historical, current, and 

forecasted (i.e., future) weather conditions. 

One well-known example of a gridded 

data product is IBM’s The Weather Company 

(IBM-TWC). According to IBM-TWC 

documentation, their services “synthesize 

multiple historical observational data sets to 

create a worldwide, high-resolution, gridded 

representation of past weather conditions” 

(The Weather Company, IBM-TWC). Their 

observations are derived from a fusion of 

many ground sources and other data products 

and are also gap-filled with remote sensing 

satellite data. Remote sensing techniques 

allow for the measurement and mapping of 

physical, chemical, and biological properties 

of Earth’s surface based on the amount of 

electromagnetic radiation reflected, emitted, 

or scattered from objects. There are three 

aspects to the resolution of remote sensing 

products: spatial (the area covered by the 

corresponding pixel), spectral (the part of 

the electromagnetic spectrum measured), 

and temporal (the sampling frequency of the 

same region of interest) (Longley, 2005). The 

IBM-TWC datasets represent a gridded data 

product where each grid cell represents a 

modeled average of weather conditions based 

on a given area defined by the pixel resolution 

(Chen et al., 2018).

Gridded data products, such as IBM-TWC, 

are among the most widely used datasets 

in weather and climate. These products 

can provide a comprehensive snapshot of 

conditions. However, ground truth reference 

data from local weather stations are not 

always available, and so the associated 

uncertainty with gridded data products is 

generally unknown. The observations used 

to generate gridded data products are coarse 

—up to 30km—often with significant data 

gaps infilled using remote sensing satellite 
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data. Recent advances in characterizing the 

Earth’s surface via orbiting satellites have 

been a growing interest in various domains, 

including agriculture. However, the use of 

remote sensing satellite data alone warrants 

caution, as they have limited reliable 

ground truth validation at the required scale 

(Wang et al., 2016). The major limitation 

of gridded datasets, like IBM-TWC, is the 

poor representation of local conditions due 

to coarse grid cell resolution, data gaps, and 

compounded uncertainties from a fusion of 

many different data sources. Decisions based 

solely on the interpretation of unknown- 

or low-accuracy data may have economic 

repercussions as these uncertainties and 

errors propagate over time.    

The preferred spatial scale of crop-related 

measurements ranges from microscale (less 

than 0.1km), provided by localized weather 

stations, to toposcale (0.1km-3km), measured 

by remote sensing systems (WMO, 2006). 

Monitoring agriculture through gridded 

data products at coarser resolutions may be 

suitable for some broad applications. Still, 

better resolution is required to capture the 

full extent of individual microclimates and 

plant responses to management operations 

at the field scale. Consistent examination of 

the wide range of meteorological conditions 

and other factors that impact plant growth 

is required to adequately assess growing 

season conditions (Lobell, D. B., 2009; 

Hoogenboom, 2000). Therefore, the ability 

to measure highly accurate real-time weather 

data that reflect local field conditions is 

crucial in agricultural data-driven decision-

making. Gridded data products with large 

spatial resolution often do not reflect these 

local field conditions and often posess lower 

levels of the accuracy and timeliness needed 

to provide consistent and actionable data for 

agronomic applications. Thus, these products 

on their own present challenges to growers 

who require better information for practical, 

informed decision-making.

On the other hand, real-time, localized 

measurements from in-situ device 

deployments have proven highly accurate and 

appropriate for agricultural decision-making. 

Localized measurements uncover spatial 

heterogeneity and temporal dynamics that 

improve management recommendations at 

the field scale (Pattey, E. et al., 2001). Crop 

growth analytics based on these in-situ 

measurements are thus more robust, helping 

growers make more intelligent decisions that 

directly translate into higher yields at lower 

costs. 

This white paper examines the differences 

between localized measurements from the 

Arable Mark 2 and gridded data products 

from IBM-TWC. Section 2 describes the 

methods used in this analysis; Section 

3 outlines the study results; Section 4 

summarizes the findings.
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2. METHODS

This paper provides an accuracy 

assessment showing how IBM-TWC datasets 

perform against Arable. The IBM-TWC 

datasets draw from gridded data products 

based on either 4km or 30km gridded 

systems, depending on the variable of 

interest. The paper focuses on geographically 

diverse global locations, including Argentina, 

Australia, Brazil, Chile, India, Mexico, 

Ukraine, and different parts of the United 

States, including California and the Midwest.

This analysis considers both core mea-

surements and derived agronomic features, 

as outlined later in this section. A similar 

analysis was published in another white 

paper, Arable Mark 2 Core Measurements: 

An Accuracy Comparison (Arable, 2020), 

which focused on the accuracy of the Arable 

Mark 2 and other commercial-grade weather 

stations compared to co-located, gold-stan-

dard instrumentation. The study found that 

the Mark 2 is a competitive alternative to 

traditional weather stations regarding data 

accuracy and reliability across variables like 

air temperature, rainfall, and other critical 

agricultural inputs. These findings show 

that Arable’s dynamic machine learning 

platform and novel approach to sensor mea-

surements avoid some of the typical sources 

of error and generate highly accurate out-

puts that can be a trusted source of ground 

truth. In this paper, we characterize the de-

viations of IBM-TWC datasets from Arable 

as a reference ground truth representing the 

local field conditions.  

The climate and crop variables considered 

fall under three broad categories:

I. Core measurements:

a) Rainfall 

b) Air temperature 

c) Relative humidity

II. Derived features based on core 

measurements: 

a) Reference evapotranspiration (ETo). 

We calculate ETo using Arable’s 

unique machine learning model based 

on localized environmental variables 

measured by the Mark 2. IBM-TWC 

provides ETo directly as part of their 

feature offerings.

b) Growing degree day (GDD) accumu-

lation and its effects on plant devel-

opment (phenology). We calculate a 

horizontal cutoff GDD using the max-

imum (upper) and minimum (lower) 

temperature thresholds specific to 

each crop and variety. GDD captures 

the heat that induces plant develop-

ment through the following equation:

— Tmin
Tmax + Tmin

2
GDD = 
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III. Crop disease risk models:

a) Delta T. This model identifies ideal 

weather conditions for spraying by 

calculating the difference between 

wet and dry bulb temperatures (Aus-

tralian Government Bureau of Mete-

orology, 2004). The recommendations 

suggest avoiding spraying pesticides 

when Delta T is too high or too low—

and ideally should only be applied 

when the values are between 2oC and 

8oC. Delta T values greater than 10oC 

are considered unsuitable spraying 

conditions.

b) Northern Corn Leaf Blight (NCLB). 

This model identifies NCLB risk 

based on air temperature (risky be-

tween 13oC and 28oC) and leaf wet-

ness detection. If the number of con-

secutive Wet Degree Minutes (WDM) 

reaches 5400 while in the risky tem-

perature range, NCLB becomes a crop 

risk (IPM, U. of Illinois, 2002). We 

identify leaf wetness using Arable’s 

unique algorithm based on localized 

environmental variables measured by 

the Mark 2. On the other hand, IBM-

TWC leaf wetness is defined as peri-

ods when relative humidity is greater 

than or equal to 90% (Sentelhas et al., 

2008).

In the next section, we compare localized 

Arable data to gridded data from IBM-TWC at 

various global locations. We characterize the 

differences between each source, providing 

performance metrics such as mean differ-

ence, overall percentage difference, confusion 

matrix results, etc. As mentioned above, the 

Mark 2 device’s accuracy against co-locat-

ed, gold-standard instrumentation has been 

previously established (Arable, 2020) and 

thus can be considered ground-truth for the 

comparisons made in this analysis. In this 

context, IBM-TWC’s divergence from Arable’s 

infield measurements represent the deviation 

of gridded data from actual field conditions, 

which are more accurately represented by 

Arable. We also use the core measurements as 

inputs into various physical models to gener-

ate different biological responses relevant to 

crop management, including evapotranspira-

tion and GDD estimates, as well as crop dis-

ease predictions for Delta T and NCLB risk.
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3. RESULTS

3.1 Core Measurements 

This section shows two types of visualiza-

tions: time series plots that show measure-

ment accumulations over specified periods, 

and scatter plots that show Arable Mark 2 

data (x-axis) versus IBM-TWC gridded data 

(y-axis). Both types of visualizations were 

generated using hourly datasets. In the scat-

ter plots, the black identity line represents 

where measurements from each source are 

equal. Points falling above or below that line 

correspond to instances of over-and under-es-

timation, respectively, noting that the farther 

the value falls from the line, the larger the 

deviation. In contrast, a tight scatter centered 

about the line represents minimal difference 

and a close match to Arable’s data.

3.1.1 Rainfall 

Figure 1. Cumulative liquid precipitation at different locations in the Midwest (USA). 

Figure 1 shows the cumulative liquid pre-

cipitation measured over three months from 

January 2021 to April 2021 in three Midwest-

ern US states: Illinois, Kansas, and South 

Dakota. Kansas has the smallest difference 

with an underestimation of 60%, or about 

75mm over the three-month time frame. Illi-

nois and South Dakota show more significant 

deviations, overestimating by 82% and 361%, 

respectively. 
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Figure 2. Cumulative liquid precipitation in Argentina, Australia, Brazil, Chile, India, and Ukraine.

Figure 2 shows a similar comparison from 

the same period extended to other countries: 

Argentina, Australia, Brazil, Chile, India, and 

Ukraine. India has the smallest difference 

with an underestimation of 37%, while Chile 

has the most significant deviation with an 

overestimation of 106%. In most cases, the 

IBM-TWC gridded data predicted too little 

rainfall, with differences as small as 5mm 

(India) and as large as 320mm (Brazil).
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Figure 3. Air temperature in Argentina, Australia, Brazil, Chile, India, and Ukraine.

3.1.2 Air Temperature

Figure 3 shows the air temperature mea-

sured over three months from January 2021 to 

April 2021 in six countries: Argentina, Austra-

lia, Brazil, Chile, India, and Ukraine. Overall, 

the IBM-TWC gridded data shows significant 

deviation from Arable Mark 2 ground truth, 

with all average deviations greater than 1oC. 

Argentina, Brazil, and Chile show a particu-

larly large scatter from the identity line, likely 

due to a combination of scarce ground data 

sampling and high cloud cover. Ukraine has 

the smallest difference of 1.15oC, while Chile 

has the largest, of 3.2oC.
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Figure 4. Relative humidity in Australia, California (USA), Chile, India, Mexico, and Ukraine.

3.1.3 Relative Humidity

Figure 4 shows the relative humidity 

measured over three months from January 

2021 to April 2021 in six countries: Australia, 

California (USA), Chile, India, Mexico, and 

Ukraine. Similar to above, IBM-TWC gridded 

data shows a significant deviation from Mark 

2 ground truth, with all average deviations 

greater than 4%. Ukraine has the smallest 

deviation of 4.6%, while the largest of 25.1% 

occurred at a rice field in California. The IBM-

TWC gridded data shows a consistent low 

bias at this site, indicating that the increased 

humidity caused by flooding the rice fields 

did not reflect in the gridded data. This case 

exemplifies a unique situation where the grid-

ded output did not capture the microclimate 

generated by the particular growing condi-

tions of rice. 
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Figure 5. Cumulative evapotranspiration at different locations in California (USA).

Figure 5 shows three different locations in 

California comparing reference evapotrans-

piration estimates from the Arable Mark 2, 

IBM-TWC, and the nearest CIMIS station. 

Unlike IBM-TWC gridded data, the CIMIS 

data map to a single point location where a 

CIMIS station is set up over a reference sur-

face (either grass or alfalfa); its distance from 

the Mark 2 is indicated in the legend of each 

plot. At two of the three locations, the Mark 

2 estimates fall between those of IBM-TWC 

and CIMIS, while both IBM-TWC and CIMIS 

overestimate at the third location. Over the 

one-month time frame, the smallest deviation 

observed is 7.8% (CIMIS station), while the 

largest observed is 30.9% (IBM-TWC). This 

shows how the lower accuracy in core mea-

surements from IBM-TWC gridded datasets 

can propagate to derived features like evapo-

transpiration and demonstrate how CIMIS 

stations can fail to provide accurate field-level 

estimates when they are located significant 

distances away from the field of interest. The 

latter is an important point since many Cal-

ifornia growers rely on CIMIS data to make 

irrigation management decisions. Still, this 

analysis suggests that these data do not meet 

the necessary accuracy requirements. 

3.2 DERIVED MEASUREMENTS

3.2.1 Evapotranspiration

Estimating water loss from cropping systems 

through biophysical processes such as evapo-

transpiration requires a suite of precisely mea-

sured weather variables representing the field of 

interest. Many systems aim to provide relevant 

estimates of reference evapotranspiration, in-

cluding gridded data products like IBM-TWC as 

well as dense weather station networks like the 

California Irrigation Management Information 

System (CIMIS). However, they often fall short of 

providing accurate field-level estimates, especially 

in areas that give rise to different microclimates.
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In addition to reduced accuracy, these sys-

tems typically only provide reference evapo-

transpiration (or require the user to input 

additional variables). For growers, this is not 

as useful as crop evapotranspiration, which 

provides water loss specific to the crop type 

and maturity stage. Arable estimates crop 

evapotranspiration by generating a dynamic 

crop coefficient based on NDVI. 

Crop evapotranspiration will more accu-

rately reflect the water losses occurring at the 

field-level and allow growers to make more 

informed decisions around irrigation man-

agement. However, for this analysis, we limit 

our examination to reference evapotranspi-

ration since we are restricted to feature offer-

ings from IBM-TWC gridded data products 

and CIMIS.

Figure 6. Cumulative evapotranspiration in Australia, Argentina, Brazil, Chile, India, and Ukraine. 

Figure 6 shows the cumulative evapo-

transpiration measured in March 2021 in six 

countries: Australia, Argentina, Brazil, Chile, 

India, and Ukraine. There is significant over- 

and under-estimation of IBM-TWC gridded 

data as compared to Arable Mark 2 ground 

truth. Across all countries, there is either a 

consistent low or high bias, with discrep-

ancies compounding over time, leading to 

excessive percentage differences. In Australia, 
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India, and Ukraine, a low bias yields percent-

age deviations ranging from 70 to 91%, while 

in Argentina, Brazil, and Chile, a high bias 

yields percentage deviations ranging from 31 

to 47%. Decisions made by growers based on 

these data could lead to poor water resources 

management and a reduction in crop yield.

3.2.2 Growing Degree Days & Phenology

One of the primary uses of air temperature 

in agriculture is calculating the rate of meta-

bolic growth based on crop-specific growing 

degree days (GDD). Calculating GDD from 

inaccurate data can dramatically increase 

the chances of missing critical phenological 

events for pest and quality management of 

the crop.

Figure 7. Cumulative GDD and the corresponding phenology of wine grapes and peaches at different locations in California (USA). 

The left plot in Figure 7 shows the GDD accu-

mulation for California grapes using a base tem-

perature of 10oC. The expected growth stages are 

identified according to the sum of GDD since the 

beginning of the growing season. This example 

shows that calculating GDD based on air tem-

perature from IBM-TWC gridded datasets would 

have predicted two premature events: 50% of 

bloom and fruit maturity at 3 and 9 days before 

the actual developmental stage, respectively.

The right plot in Figure 7 shows another 

example of prematurely predicted events for a 

peach orchard in the California Central Val-

ley. In this case, the stage when “shoots reach 

30% of their final length” would have been 

prematurely predicted by seven days, while 

the stage when “flowers fade” would have 

been off by nine days.
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Figure 8. Delta T spray conditions in Australia. 

3.3 CROP DISEASE RISK MODELING

3.3.1 Delta T

Delta T, also known as “wet-bulb depression,” 

is an indicator of acceptable spray conditions in 

agriculture. The recommendations are based on 

droplet drift and pesticide uptake efficiency. High 

Delta T values indicate a fast water evaporation 

rate, such that droplets are at risk of drifting away 

from the targeted crop and may dry more quickly, 

reducing pesticide performance. Meanwhile, low 

Delta T values indicate a slow water evaporation 

rate, allowing droplets that are already prone to 

drifting to become more potent and a potential 

risk during temperature inversion at night. 

Weather variables such as relative humidity, 

air temperature, and dew point temperature 

are crucial inputs to this calculation. Hence, 

errors in the estimation of these variables in-

crease the risk of spraying at the wrong time. 

As demonstrated in Section 3.1 above, IBM-

TWC gridded datasets often have significant 

inaccuracies associated with these core mea-

surements—these errors can directly translate 

into false predictions for ideal and non-ideal 

spray timing.  

Figure 8 illustrates the separation be-

tween Delta T ideal and non-ideal spray con-

ditions at a site in Australia. The green zone 

corresponds to ideal conditions, while yel-

low and red represent marginal and unsuit-

able conditions, respectively. Over this short 
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week-long time frame, we can see that there 

are two days when IBM-TWC gridded data 

incorrectly predicted unsuitable conditions 

for spraying, when in fact, the conditions 

were actually preferable. This represents two 

lost opportunities for spraying that could 

have provided better crop protection. Below, 

we present the confusion matrix results for 

Delta T spray conditions computed from 

much more data (longer time frames, at 

three different locations).

IBM-TWC: Preferred Conditions IBM-TWC: Unsuitable Conditions

Australia California, 
USA Kansas, USA Australia California, 

USA Kansas, USA

Arable: 
Preferred 

Conditions
42.8% 26.4% 80.8% 36.7% 54.0% 2.3%

Arable: 
Unsuitable 
Conditions

0% 0% 0.2% 99.1% 99.5% 98.7%

Table 1 summarizes the confusion matrix 

results for the Delta T spray conditions (pre-

ferred and unsuitable only) across three loca-

tions. Looking at the green cells, in California, 

IBM-TWC correctly identified unsuitable 

conditions 99.5% of the time but only identified 

preferred conditions 26.4% of the time. Look-

ing at the red cells, in California, IBM-TWC did 

not mistakenly identify any unsuitable condi-

tions as preferred (0% of the time). However, 

they did mistakenly identify many preferred 

conditions as unsuitable (54% of the time). In 

other words, a grower that was relying on IBM-

TWC gridded data would have missed a majori-

ty of the opportunities to spray. 

Out of the three locations, only Kansas 

yielded a false positive rate of 0.2%, meaning 

that there were only a handful of events where 

IBM-TWC gridded data incorrectly catego-

rized conditions as suitable for spraying. Even 

though this percentage might be small, choos-

ing to spray during unsuitable conditions could 

cause application drift and result in economic 

losses. On the other hand, there were many 

missed spraying opportunities, with IBM-TWC 

gridded data incorrectly classifying preferred 

conditions as unsuitable 2.3%, 36.7%, and 54% 

of the time for Kansas, Australia, and Califor-

nia, respectively.  

Table 1. Confusion matrix results for Delta T spray conditions at three different sites. The Australian dataset covers July 2020 through March 
2021, the California dataset covers May 2020 through September 2020, and the Kansas dataset covers July 2020 through April 2021. Note 
that the “marginal spray” condition was removed for simplicity, so the percentages do not add up to 100%. The green cells indicate agreement 
between the two sources, while the red cells indicate disagreement.
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3.3.2 Northern Corn Leaf Blight 

Northern Corn Leaf Blight (NCLB) occurs 

commonly in the Midwestern United States, 

where a majority of corn is grown. NCLB 

thrives in high humidity and heavy dew 

environments when temperatures are in the 

13oC to 28oC range. It can be devastating; with 

early infections, yield losses can be as high as 

50% (Salgado, J.D. et al., 2016). Some avenues 

to battle NCLB include selecting resistant 

hybrids, crop rotation, and foliar fungicides 

application. The ability to detect NCLB al-

lows growers to choose a resistant hybrid and 

determines whether they need to apply fungi-

cide or rotate to a non-host crop to reduce the 

amount of disease in subsequent seasons. 

As described in Section 2, Arable estimates 

leaf wetness based on a unique algorithm and 

uses this as an input—along with air tempera-

ture and rainfall—to monitor NCLB risk. The 

IBM-TWC gridded datasets do not provide 

leaf wetness directly; however, we defined 

a leaf wetness proxy based on a published 

algorithm (Sentelhas et al., 2008) and input 

the corresponding set of measurements into 

the same disease model to predict NCLB risk. 

Similar to the above, calculating this risk 

based on inaccurate data will inevitably lead 

to ineffective crop disease monitoring strate-

gies. 

Figure 9. NCLB risk detection in Kansas.

Figure 9 illustrates conditions that pres-

ent a high risk of NCLB occurrence at a 

cornfield in Kansas. Wet degree minutes 

(WDM) above the risk threshold line repre-
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sent conditions where NCLB is considered 

high-risk. We can see that there are several 

instances with considerable discrepancy 

between the WDM estimates generated by 

IBM-TWC and the Mark 2. There was one 

case of separation during late July where 

high-risk conditions went completely unde-

tected by IBM-TWC. The event represents 

an instance when growers could have failed 

to take the appropriate actions to protect 

their crops. Below, we present the confusion 

matrix results for NCLB risk at the same site 

but using more data based on a longer time 

frame.

IBM-TWC: High Risk IBM-TWC: Low Risk

Arable: High Risk 75.0% 25.0%

Arable: Low Risk 0.9% 99.1%

Table 2 summarizes the confusion matrix 

results for NCLB risk at a site in Kansas. 

Looking at the green cells, IBM-TWC cor-

rectly identified low-risk conditions 99.1% 

of the time but only identified high-risk 

conditions 75% of the time. In other words, 

a grower relying on IBM-TWC data would 

have missed 25% of the high-risk events 

and could have potentially lost crop to the 

disease. Looking at the red cells, we note 

that IBM-TWC falsely predicted high-risk 

conditions—when they were, in fact, low-

risk—0.9% of the time. These types of false 

alerts, although rare, may have undesirable 

consequences based on any actions taken by 

the grower.

Table 2. Confusion matrix results for NCLB risk at a site in Kansas. The dataset covers July 2020 through March 2021. The green cells indicate 
agreement between the two sources, while the red cells indicate disagreement. 
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CONCLUSIONS

This paper assessed the accuracy of IBM-

TWC gridded data products using the Arable 

Mark 2 as a local source of ground truth. 

Across the core climate variables of rainfall, 

air temperature, and relative humidity, the 

study found significant discrepancies in the 

IBM-TWC gridded data, showing some cases 

where rainfall was overestimated by more 

than 360% and the average deviations for 

air temperature and relative humidity were 

over 3oC and 25%, respectively. These incon-

sistencies can be attributed to gridded data 

products’ lower accuracy representing local 

field conditions due to coarse grid cell reso-

lution (covering up to 30km), data gaps, and 

compounded uncertainties from a fusion of 

many different data sources.

Not only is the data incompleteness in-

herent in gridded products operationally 

inefficient for growers basing decisions 

on core measurements, but the observed 

deviations from ground truth propagate 

throughout their system, also impacting 

derived high-value agronomic features. The 

study showed that reference evapotrans-

piration could be underestimated by over 

90%, as well as significant discrepancies in 

degree-day accumulations, leading to pre-

maturely predicted phenological events up 

to nine days off. The study also showed that 

gridded data products are unreliable when 

modeling spray conditions and disease risk 

for crop management. Ideal spray conditions 

based on Delta T were missed over 50% of 

the time, and up to 25% of high risk NCLB 

events went undetected. Relying purely on 

gridded data for agricultural monitoring is 

risky and may result in poor crop manage-

ment, reducing yield, and incurring econom-

ic losses.

All of the above suggests that there is no 

true alternative to in-situ sensor deploy-

ments that provide real-time measurements 

that accurately capture field conditions. 

Arable is one cost-effective solution that 

provides highly accurate measurements 

based on robust sensor technology and a 

novel machine learning-enabled platform. 

The core measurements offered by the Mark 

2 have been extensively field-tested and are 

used as trusted inputs for irrigation manage-

ment, phenology monitoring, spray timing, 

and disease modeling. As an all-in-one 

localized weather station and crop monitor, 

Arable provides high-quality data for more 

informed decision-making and better agri-

cultural management.
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